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On the occasion of the International Conference on Nonlinear Hyperbolic Problems
held in St. Etienne, France,.1986 it was decided to start a two years cycle of
conferences on this very.r"apidly expanding branch of mathematics and it's
applications in Continuum Mechanics and Aerodynamics. The second conference
took place in Aachen, FRG, March 14-18, 1988. The number of more than 200
participants from more than 20 countries all over the world and about 100
invited and contributed papers, welil balanced between theory, numerical analysis
and applications, do not leave any doubt that it was the right decision to start
this cycle of conferences, of which the third will be organized in Sweden in 1990.

This volume contains sixty eight original papers presented at the conference,
twenty two of them dealing with the mathematical theory, e.g. existence,
uniqueness, stability, behaviour of solutions, physical modelling by evolution
equations. Twenty two articles in numerical analysis are concerned with stability
and convergence to the physically relevant solutions such as schemes especially
deviced for treating shocks, contact discontinuities and artificial boundaries.
Twenty four papers contain multidimensiona!l computational applications to
nonlinear waves in solids, flow through porous media and compressible fluid
flow including shocks, real gas effects, multiphase phenomena, chemical

reactions etc. /}\,(\) ) <

The editors and organizers of the Second International Conference on Hyperbolic
Problems would like to thank the Scientific Committee for the generous support
of recommending invited lectures and selecting the contributed papers of the
conference.

The meeting was made possible by the efforts of many people to whom the
organizers are most grateful. It is a particular pleasure to acknowledge the
help of Riikka Tuominen for preparing the abstract book and Bert Pohl for his
dedicated help organizing the conference. It is also a pleasure to thank Sylvie
Wiertz, Angela Schneider, Gabriele Goblet and Thomas Hoerkens for preparing
these proceedings. Finally the organizers are indebted to the host organizations
Rheinisch Westfilische Technische Hochschule Aachen and the city of Aachen
and to those organizations which provided the needed financial support for the
conference: Control Data GmbH, Cray Research GmbH, Deutsche Forschungs-
gemeinschaft, Diehl GmbH & Co., Digital Equipment GmbH, FAHO Gesellschaft
von Freunden der Aachener Hochschule, IBM Deutschland GmbH, Mathematisch -
Naturwissenschaftliche Fakultit der RWTH, Ministerium fiir Wissenschaft und
Forschung des Landes Nordrhein-Westfalen, Office of Naval Research Branch
of London, Rheinmetall GmbH, US Air Force EOARD, US Army European Research
Office of London, Wegmann GmbH & Co.

Aachen, September 1988
Josef Ballmann
Rolf Jeltsch
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NON-OSCILLATORY SCHEMES FOR
MULTIDIMENSIONAL EULER CALCULATIONS
WITH UNSTRUCTURED GRIDS

PauL. ARMINJON

Université de Montréal, Dépt de Mathématiques et Statistiques, C.P. 6128 Succ. A,
Montréal, Québec (CANADA), H3C3J7

ArLaiN DERVIEUX, LouLa FEZOUI, HErVE STEVE

INRIA, 2004 Route des Lucioles, Sophia-Antipolis 1 et 2, 06565 VALBONNE
(FRANCE)

BruNo STOUFFLET

AMD-BA, DGT-DEA B.P. 300, 78 Quai M. Dassault, 92214 SAINT-CLOUD
(FRANCE)

The purpose of this paper is to present a synthesis of our recent studies related to
the design of multi-dimensional non-oscillatory schemes, applying to non-structured
finite-element simplicial meshes (triangles, tetrahedra). While the direct utilization of
1-D concepts may produce robust and accurate schemes when applied to non-distorted
structured meshes, it cannot when non-structured triangulations are to be used. The
subject of the paper is to study the adaptation of the so-called TVD methods to that
context. TVD methods have been derived for the design of hybrid first-order/second-
order accurate schemes which present in simplified cases monotonicity properties (see,
for example, the review [2]). A various collection of first-order accurate schemes can
be used, they are derived from an artificial viscosity model or from an approximate
Riemann solver. However, the main feature in the design is the choice of the second-
order accurate scheme ; this choice can rely either on central differencing or on upwind
differencing.

1 GALERKIN AND UPWIND FINITE-ELEMENT SCHEMES FOR
TRIANGLES.

Let us consider the following scalar model problem

{u¢+‘7.6u =0in IR? )

u(z,0) =uo(2),

and a finite-element triangulation of IR? ; the generic element is denoted by T,
and the P;-Galerkin basis function related to a vertex i is written ¢;: ¢; is con-
tinuous, affine by element, ¢; = 1 at vertex i, 0 at all other vertices. Then the

Pi-Galerkin approximation scheme for (1) reads :

(%;-‘v ¢t) - (uf;, 6¢s) =0 (2)
or
(%:"4’-‘) + Y areaMuV)ir(Vei)ir =0 @)

T neighbour of




]

with

{ (uV)lT some average of uV on T @

(Vo)lr = (for, 7 do) / area(T)

where I), I are mid-sides and G the centroid of T as sketched in Fig. 1 ; the sum is
taken over triangles T having ¢ as a vertex.

The conservation properties of scheme (2) may not be clear at first glance ; it is
then interesting to introduce a second scheme, that is a variant of (2) : Let cell; be
the polygon around vertex i that is limited by medians as sketched in Fig 2. Then we
shall call “Finite-Volume Galerkin” the following scheme:

area(ceu,-)?; + Y D[ Rde=0 (5)
Ot i peighbour of i GG,

where I is the middle of the side ij and G1, G2 the centroids of the two triangles
having ij as common side ; the sum is taken over the vertices j that are extremities
of sides having i as other extremity.

Lemma 1 :Schemes (2) and (5) are identical if (i) Mass matriz lumping by line-
summing is applied to (2) and (ii) The following numerical quadratures are applied :
- for (2) : (u17)|1- o —(‘u.'f;,' + 'lljf/‘j + ukf}k) where i,3, k are the vertices of triangle T

- for () : (uV)iy = 5(wiVi +4;V}).

The schemes of the above family (2), (5) do not satisfy the Maximum Principle (case
V = const.) ; however, BABA and TABATA [4] proposed an upwind version of (5),
that, in the case where V' is constant, can be written :

area(cell.‘)% + Z (uﬁ)/;”c V. fdo
1 2

d j neighbour of i 2

= Ui V.7do
> el Vel

j neighbour of i

(6)

83| =

where the left-hand side is the Finite-Volume Galerkin term, and the right-hand
side a numerical viscosity. This scheme satisfies the Maximum Principle for V = const.
and preserves positiveness in the general case ; however, it is only first-order accurate
and we shall discuss several ways to recover second-order accuracy locally.

2 TVD-LIKE SCHEMES FOR SYSTEMS.

The extension to second-order schemes can be performed starting from Lax-Wendroff
schemes (with triangles : one-step, two-step Taylor-Galerkin schemes, [i] [8]) ; this
extension can rely on an FCT approach {11} [10] [13] or a symmetric TVD one [3] {13)
; a description of all these schemes is out of the scope of this paper and we restrict
ourselves to a family of MUSCL methods [15], extended to unstructured triangulations
following [9).

2.1 Extension of the first-order scheme

Vijayasundaram proposed in {16] the extension of the BABA-TABATA scheme to
hyperbolic systems by introducing an (approximate) Riemann solver or a flux splitting
as follows : the Euler system

Wi+ F(W). + G(W)y =0 ]




¥
is discretized by
area(cell;)% + Z (Wi, W;, i) =0 (8)
J neighbour of &
with
R o= 7 do = (0%, 7Y
i Beeltindeelt, (n,7%) 9
$ : flux splitting or Riemann Solver,
for example :
H(W;)+ H(W; 1 W+ W;
oW, w;, ) = ZELLEO) _Lp (BB jw,-woy (10)
with
HW) = F(W) +19G(W) )
P(W) = (W) =n"AW)+ " B(W)
and

P=TAT™, |PI=T|A|T"Y, A diagonal . (12)

2.2 Extension to a second-order accurate scheme.
One way to construct a MUSCL second-order extension is to introduce nodal approxi-
mate gradients [9):

gradW (i) = ( / / & ngdez) / / / didz (13)
in order to extrapolate mid-side values :
Wi; =Wi+3gradw(i). i (14)
Wj' = W,‘ - %gradW(j) . ij
and then introduce them in the flux function :
area(ccll.')% > (Wi, Wji, &) =0. (15)

j neighdour of i

This construction results in a scheme which is (spatially) second order accurate
but may present over/undershoots in solutions.
We now study several approaches to recover (more or less surely) monotonicity.

- Limiters with nodal gradients. In order to construct a hybrid between the second-

order scheme and the first-order one, the TVD approach necessitates the knowledge
in the direction of the flux of four successive values of the dependent variables, let us

call them
Wio1, Wi, vvj’ u’j+l' (16)

While these can be nodal values in the context of a structured grid, the values
Wi—1 and W;4 have to be fictitious in the unstructured triangulation one. To derive
these fictitious values, we can use the nodal gradients :

{ Wiey =W, —2VW() . i + (W; - W) an
Win =W; -2VW() . ji+ (W - W))




We then compute, following [15], the “average” values of variations of W :

{ dW; = ave (W, ~ Wi, Wi — Wiy)

AW, = ave (W; ~W;, W; — Wj41) (s)
with (¢ > 0) :
a(b? +€%) + b(a® +€%) .
ave (a,b) = i oS>0 (19)
0 else
and finally extrapolate limited values
WE™ =W, + 2dW;
(e e, 2

that are introduced in the flux function & instead of (W;, Wj:). With this ap-
proach, the solutions are oscillation-free in most transonic cases, but high Mach cal-
culations produce negatives pressures. We want then to go further in the prevention
of oscillations.

- Element-by-element slope limitation. One explanation for the Jack of monotonic-
ity of the above scheme is that the nodal gradient is a mean value of element-wise
gradients, that may not allow for an accurate detection of oscillations. A first way
to circumvent this phenomenon is to consider, from a pessimistic point of view, each

element-wise gradient for the construction of the nodal gradient ; we propose the
following li

ow . lim X aW
(5 0] = r s, 2ot () &
and same for 5, with
min mod(ay...aq) =
. o . ( sign (a1) + sign (ai) (22
mgn(al)*nl( 5 )Ix min |ax| )
u k=(1,-n)
and with :
either (§,7) =(2,%) 2
or (&,m) = (direction of the local gradient, its orthogonal). (23)

This approach is very robust but rather dissipative and non-smooth.

- Upwind element formulation. We lastly propose a formulation which is inspired
from the 1-D case. We return to the (16-20) context and propose a different way
to define the fictitious values W;_; and W;,, : instead of using the nodal gradients
VW (i), we use the usual triangle-wise Galerkin gradient VW |r that we compute on
the so-called upwind elements T;;, Tj; w.r.t. the considered segment ij ; they are
defined as follows : for any small enough positive number A,

i +)MieTy
{j +Ai] € Ty, (24)

..

iy B e AW

& Y




Then we put

{ Wisy =Wi-VYWir; zi 25)

Wi =W;~ VWirji .

the rest of the calculation is as in (18)-(20). Since this construction is done after
the side ij is considered, the limitation can be applied either to the primitive variables
W = (p,u,v,p) or to characteristic variables, which are defined as follows :

WeTt (—“—’—*;—“fl) (0, pu,p, E) (26)

where T is defined in (12).

- Central-difference MUSCL variant. Lastly we describe a variant of the MUSCL
scheme that on second order central differencing : this scheme is obtained by replacing
the usual non limited MUSCL interpolations W;;, W;; by the following ones :

. V.4 Wi W
W = VodWs g, B

L Waw, L WeW @7)
Wi ==t ki~

where k;; is defined from four consecutive (partly fictitious) values of W :
ki = ki (Wie1, Wi, W3, Win1) (28)

following the method of symmetric TVD design {5,17) ; in the experiment pre-
sented in the sequel, the following limiter is applied :

W, =W, - W~W,
+ 13 i — 1
™S T Ww, 0 v T wow
. + - 1 1 of ot + . -
min {77, v <=} if sign (r*) = sign (v
rj = (:p it 'r—;JF_’ Tji) g ( i g ( q) (29)
0 else

21‘.’ i

ki "’I'I'-?#g'

Furthermore, the limitation is applied separately on each primitive variable (p, u
v, p)-

)

3 NUMERICAL EXPERIMENTS

3.1 Blunt body comparisons.

We present a sample of experiments performed with the simple test case of a flow past
a halfly-circular blunt body with Mach at infinity equal to 8 and zero angle of attack.
Although the grid used here is structured, (2000 nodes, Fig.3) both the alternation
of 4-neighbours / 8-neighbours molecules (“Union Jack grid”) and the bad alignment
with the shock to be captured make this problem rather typical of the difficulties
arising with unstructured arbitrary grids.

The upwinding of the solution is obtained by using Osher’s approximate Riemann
solver {12]. The solutions are computed with an implicit unfactored scheme with
a first-order accurate linear operator (using the Steger-Warming splitting). For the
central-difference scheme, this solver is not adequate at high CFL numbers, as shown

in {7).




Application of scheme (16)-(20) : we did not get convergence of this scheme (neg-
ative pressures appear and do not disappear) for any initial state. This is explained
by the non efficient detection of over-shoots/under-shoots by the averaged nodal gra-
dients.

The second scheme, referred to as Hermitian limited or element-limited, yields the
entropy contours in Fig.3a. We think that the shock is captured in a stable enough
maaner but much numerical viscosity is involved, in particular near the stagnation
point, as one can see when considering the entropy level along the bady.

The third scheme experimented is the “upwind-element” formulation, with lim-
iters applied to the primitive variables, while in the fourth the limiters are applied to
the characteristic values ; we emphasize that, due to a less viscous limitation than in

the second scheme both results are more satisfactory from the standpoint of internal
viscosity. Nevertheless, the characteristic limitation seems to improve both stability
and accuracy. There remains a low frequency error in the entropy generation through
the shock which slighly pollutes the contours. _

Lastly the “central difference-MUSCL" scheme is applied ; because of the more
severe limiter used here, the numerical entropy generation is larger than when the
upwind schemes are applied but still rather acceptable (Fig. 3.d).

3.2 3-D applications.

For the illustration of the 3-D extensions, we refer to [6) for scheme (20}, to {14] for
scheme (23), and we present here a result obtained with scheme (21) : the interaction
of two supersonic jets in a combustion chamber is computed with 3000 and 20,000
node-half geometries ; the maximum Mach number is close to 5 ; the second-order
accurate results are in good agreement with each other(Fig. 4) while the first-order
scheme applied to the 20,000 nodes grid produces a rather poor result.

4 CONCLUSION.

Several methods are described and compared for the construction of TVD-like schemes
applying to arbitrary simplicial finite-element triangulations. Several schemes are ro-
bust enough for the capturing of strong shocks arising in high Mach flows ; they
extend to 3-D, allowing for a large set of applications involving reentry simulations
and stiff internal flows.
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FINITE-DIFFERENCE SCHEMES WITH DISSIPATION CONTROL
JOINED TO A GENERALIZATION OF VAN LEER FLUX SPLITTING

Germain BILLET

Office National d’Etudes et de Recherches Aérospatiales
29, avenue de la Division Leclerc
92320 CHATILLON, France

SUMMARY

A class of flux splitting explicit second-order finite-difference schemes
Srg is set up. It depends on a single parameter. The adaptation of the value of this
parameter enables us to control the dissipative error included in these schemes. A
generalization of Van LEER flux splitting makes possible an improvement in the
numerical solution in the regions where the Mach number is relatively weak. 1D
and 2D transonic flows are presented.

INTRODUCTION

The recent appearance of the flux-splitting method [1,2] used in solving
the hyperbolic system of conservation laws U;+ F(U),=0 has permitted the
setting up of a class of flux-splitting Sgg schemes that depends on the single
parameter a. These schemes are stable up to CFL=2. The eguivalent third-order
system (ETOS) of this family has been obtained and the "optimal" value of a
(a=2.5), that minimizes the amplitude of the peaks of the numerical solution near
the shock, has been determined by using the numerical tests of shock-tube flow
and moving shock in 1D space [3]. The STEGER-WARMING splitting allows one
to study the ETOS such as the ETOS associated with upwind scheme Sy and
downwind schemes Sp defined in [4]. This study shows that the scheme Sgg with
a=2.5 (noted SFg®”7) is in fact more dissipative than with a=1 in the case of a
compression wave or a shock. The scheme Spg with this last value corresponds to
the GER-WARMING scheme used in (1]. When Van LEER flux splitting is
used, the stuc{l‘; of the ETOS appears more difficult because the jacobian matrices
associated with the total flux and the partial fluxes have not the same eigenvalues
and in this case, the method taken into account above cannot be applied.
Nevertheless, the ETOS has been studied for the one-dimensional isothermal flow
and some interestin%results concerning the dispersive and dissipative properties
of Sy schemes were brought to light.

In this paper, the Sgg schemes are associated with a generalization of
Van LEER splitting. This generalization, which keeps the whole properties of Van
LEER splitting, has been possible hecause in a great number of applications, the
Mach number does not reach the values -1 and 1 in a same flow. In this case, some
conditions that are linked to Van LEER splitting for one of these two values can be
cancelled, and the subconditioned sysiem is correctly solved at that time by the
ingertion of a parameter ¢ in the partial fluxes. This parametric splitting (called ¢-
splitting) makes possible an improvement in the numerical solution, especially in

e zones where the Mach number is less than 0.6,

Some results obtained for 1D shock-tube problems, a 2D steady flow in a

nozzle are presented. They show that Syg schemes associated with e-splitting are
well-adapted to compute such flows.
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STUDY OF THE ETOS OF THE SCHEMES Srs

Let the initial-value problem for hyperbolic 1D system in conservation
form be:

U+ FIU+F(W)=0, Ux0)=U), -»<z<+w. (1)

Here U(x,t) and the fluxes F* and F- € R™, Let U; " be the numerical
solution of (1) at the mesh point x; =iAx and at time t=nAt. F* and F" represent
the partial fluxes associated with the forward and the backward moving waves
respective}{. Any non-linear system (1) is discretized with a second-order accuracy
in time and space by the following predictor-corrector schemes Sgs {3] :

N
Yy T - - + +
7=u, —-ao(F‘.“—Fi LLASVAN

‘ (2)
U."+,=U.n+~0- "
11 i 20

n n
- + ~ it - +
a(F‘.”—Fi_z) +(l~4a)(FiH—ﬁl_‘) +(3u—l)(Fl. -F")

A S S T
"F|+1+Ft -F‘ +"i-—l

where Fit =F* (U;) and o=At/Ax.

A way to study the properties of Srg schemes is to make an analysis of
the ETOS; i.e., of the system (1) approximated hy the Srg [5). In this paper, we
study the ETOS in the case of the 1D isothermal flow:

U] |p pM
v=l |= F=F++F = (3)
p pM p(M2+1)

(the unities have been chosen such that p/p=1). p, p and M represent the density,
the static pressure and the Mach number respectively. We analyse the different
error terms that app:ar in the ETOS when we choose to use either STEGER-
WARMING splitting (SW) or the Van LEER splitting (VL). In both cases, we
suppose 0sM =<2, The ETOS can be written:

2
+ -y —A2ZN 1 j 3
W+ FO+F) =03 lﬁi“"m‘”ﬂm* E)o,M,aM (U )_+ ejlo.MaXU )}
=1 4)
+0(A%); €=12 .

We can make a study of the nature of the partial differential equation
(4) by considering the effect of the odd and even higher derivatives.

The terms £¢ (o, MU )xz: are of a dispersive nature and lead to
dispersive oscillations in the numerical solution. Fig. 1.a shows the evolution of
£,/ against M for two values of the Courant number. For both CFL values, the
dispersive errors remain weak and the choice of the flux splitting does not have a
great effect on their evolutions, The curves are continuous with VL splitting,
whereas, with SW splitting, it a}mears to be a discontinuity of £2 due to the non-
continuity of dFt/dU at M =1 with this splitting.

12

JUPTETRION IR P



-8

0.3

0.1
01
-01

CFL=1

E‘x
1
4 Dissipative
it My >0
02/ . ) M
1]
~0.2 Dissipative
if M <0
-1l
. CFL=2
E'l ’t’
11Elgy /
4 E! Dissipative
L Elgw l i Mx>0
0 ;><F_§ )
e} \ 2 Dissipative
vL Ei it My <0
-14
Fig. 1b

13




14

CFL=2

-2 a=1 |Dissipative
VL if My <0
~3
a= 258
-4 VL

3 Dissipative
B § if My <0
—-4)

-5}«-25

Fig. 1d

FIG.1.  Evolution of the different dispersive
and dissipative error terms.

VL=Van LEER, SW= STEGER-WARMING

iyt e WAy ot

R



‘ The terms T¢= E¢/(0,M,a)M(U;),. can be defined as dissipative terms
if E¢/(0,M,a)M, >0 and antidissipative if E¢’(0,M ,a)M, <0, Therefore, according to
the sign of E¢/M,, these terms T¢ can have a good behaviour by damping the
contingent oscillations created by the dispersion errors or a bad effect by setting up
new oscillations. E¢/ are drawn on fig. 1b, 1c and 1d. Whatever the splitting (VL or
SW), they are discontinuous at M=1, because higher order derivatives arise in
these terms, and in this case even VL splitting is not capable of having the
continuity of E¢ at M=1. This particularity explains the difficulties that can
appear at the sonic point with these splittings. But, generally, the strength of the
discontinuity is weaker with VL splitting.

EYy do not depend on a. It is interesting to note that the use of VL or SW
splitting for the first equation of (1) (3) gives opposite dissipative properties for a
given acoustic phenomena. For example, in the case of a compression or shock
wave (M, <0) the scheme is, in the agregate, dissipative with VL splitting and
antidissipative with SW splitting. In the case of a rarefaction (M,>0), it is the
contrary.

The terms Eg' depend on a. Whatever the splitting (VL or SW), the
scheme is always more dissipative when the value of a increases (for example
a=2.5) in the case of a comgression or shock wave. Contrary to this result, the
scheme is more dissipative when a tends to zero for a rarefaction.

The third terms eg/(0,M,a)(U)),? are differentials of an order lower than
the previous terms and their effects are generally negligible.

To conclude this chapter, we can state that the choice of the flux
splitting and the selection of the value of a have a great weight on the dissipative
qualities of the schemes.

GENERALIZATION OF VAN LEER FLUX SPLITTING

This generalization has been possible thanks to the following remark. It
isrelatively rare to have a Mach number that reaches the values-1 and 1 in a flow.
Generally, we have a main flow where 0 <M < with or without some secondary
flows where the Mach number is limited in the lower values by M;,ssuch as
-1<M;ns (in a great number of flows, |Mins| is small compared to 1). In these
conditions, it is possible to define the following parametric e-splitting when the
one-dimensional Euler equations are considered:

MinrsMs1
2 R 2 3 +_ - _ -
Fi7 == S(+aM-1) F'=F -F  =pcM-F,
-_ £ .- +_ . _ 9.9 1 -
{ Fy=-SF i2-(-1M] { F)f=F,-F] =pdM+ 3)-F, (5)
2 g2 3
- Y 2 pcM
\ F,” = — F*Y=F _-F-= 2+(Y-1)MY-F .
S T BT FS N Bt e Bl T Th I-Fy

When M=1 F*=Fand F-=0.
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In these expressions, c and 7 represent the sound speed and the specific
heat ratio. The retained decomposition verifies the following conditions:

for MipfsM<w
(a) F=F*+F
(b} Alleigenvaluesof dF*/dU are =0
All eigenvalues of dF-/dU are <0
(¢) F*andF continuous
with F*=FforM=1
(d) dF*/dU are continuous everywhere
(e) dF/dU hasone eigenvalue that vanishes for M <1
() F* mustbe a polynomial in M with the lowest possible degree.

It is difficult to show that the condition (b) is respected for the Euler
equations because of the complexity of the calculations. Nevertheless, in the case
o? the isothermal flow (Y =1), it is possible to demonstrate that this condition is
respected for 0se<5/3 (when Mins =0). It is thought that this result can be
extended to the case Y=1.4. When £¢=0, the parametric flux splitting degenerates
to Van LEER splitting. The evolution of the eigenvalues of SW, VL and e-
splittings is drawn in fig. 2 for Y=1. Figure 3 shows the evolution of the
components of F, Ftand F- with STEGER-WARMING, Van LEER and the
parametric splittings (¢ =0.2) when 7Y=1.4.

7\:4 )‘;4

Az

FIG.2. Evolution of the eigenvalues of the partial fluxes against
Mach number ( T=1).

With this generalization, the merit of the continuity of dF*/dU for M=1 is
kept. But more particularly, it becomes possible to define the decomposition that
gives better numerical results in the zones where the Mach number is weaker
(=0.6). The e-splitting keeps the symmetry with respect to M. This property is
verified easily if we take the following splitting when -1sM < -M,:

A ?;5(1 + XM+ 1)

+_C o _
F, _‘YF' 2-(-1)M]

P] F+2

Y 2
+ _ — = —_ +
Fl= and F; =F,-F,,

S oePon R}
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In the special flows where the Mach number can be less than -1 and
eater than 1, it is possible nevertheless to define a parametric splittini that
gtrzgenerates to VL splitting as well when e=0 (this splitting is not presented here).

) F&/pe?

F2*/0c?

M

FIG.3. Evolution of the partial fluxes. Euler equations
VL =Van LEER, SW= STEGER-WARMING, £¢=0.2.
APPLICATIONS TO 1D AND 2D FLOWS

The new decomposition (5) associated with the SFg??7 scheme (a=2.5)
has been compared with other methods:

a=1, &=0 (STEGER-WARMING scheme with Van LEER splitting)
a=2.5, e=0 (SFs®?T scheme with Van LEER splitting)
a=2.5, £=0.22 (Sps®"T scheme with parametric e-splitting).

We have studied the shock-tube problem with a pressure ratio equal to
2.8 [6]. This case enables us to have a Mach number that remains relatively weak
(0=M=0.4). The numerical solution is presented in fig. 4 with CFL=1. %n one
hand, the solution is improved near the shock when a=2.5 (figs. 4.a and 4.b),
because the scheme Sgg is more dissipative with this value. But, on the other
hand, the solution of the expansion wave is lightly damaged for the opposite
reason; when we adapt the value of a to have a more dissipative scheme for u, <0
(u represents the velocity), automatically the scheme becomes more
antidissipative when u,>0. In the present case, we solve this problem by using the
two parameters (a,e). The value of the first parameter a is adjusted to have a good
solution when u;<0 (shock or compression wave) and the second parameter ¢
enables us to have a correct representation of the rarefaction (Fig. 4.c).

The conjoining of Sps®fT scheme with parametric flux-splitting has
been applied to 2D steady flow inside a nozzle (fig. 5.a). Two parameters ¢£; and e2
appear. They are linked to the fluxes F* and G* respectively which are defined in
the computational domain (see [7] for example). As in [8), some problems appear
near the wall with ¢ and e2=0, in particular strong oscillations of the numerical
solution arise on the wall where the slope is strongest. The computation diverges
rapidly (12* time step) (fig. 5.b). This is probably due to the strong gradient of the
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partial fluxes near the wall that are in this instance, sensitive to the different
numerical treatments applied to the boundary mesh point and the following mesh
points close to the wall. If the values of £; and &3 are adjusted (mainly the
parameter ¢2 included in the transverse fluxes), so that the gradients become
weaker, these problems are eliminated and the numerical solution becomes correct

(fig. 5.c). This computation has been realized for CFL =0.8 (when the parameters
are well-adapted, the CFL can reach 1.3 in this case).

To conclude this chapter, we can say that the generalization of Van

LEER flux splitting makes possible a sensible improvement of 1D, 2D and
probably 3D numericai solutions.
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COMPUTATION OF INVISCID VORTICAL FLOWS IN PISTON ENGINES

B. Binninger, M. Jeschke, H. Henke, D. Hanel
Aerodynamisches Institut, RWTH Aachen
5100 Aachen, West Germany

SUMMARY

Two and three-dimensional vortical flow in a cylinder of a piston engine is investigated by means of
finite-difference solutions of the Euler equations. Since both, the physical understanding of piston
flows is far from complete and adequate computational methods for such complex processes are
missing, the restriction to inviscid flow is considered as a first step to achieve basic insight into the
large-scale vortical motion of the flow.The discretization of the conservation equations is carried
out in a time-dependent, node-centred grid. Central differences are used to approximate the spatial
derivations. For the integration in time two methods are applied, an implicit factorization scheme
for plane and axisymmetric flows and an explicit Runge-Kutta time-stepping scheme for the three-
dimensional flow.The numerical results for plane flow are compared with experiments using Mach-
Zehnder-interferometry. The comparison confirms that the results obtained with the Euler
equations reflect essential features of the flow in the cylinder of piston engines. For three-
dimensional flow two examples are chosen to discuss the influence of off-centred valves and of the
shape of the piston crown ou the onset of the swirling flow during the intake stroke and its
subsequent development during the compression stroke.

INTRODUCTION

The flow in piston engines is governed by a variety of complex physical processes like turbulent
interactions, inhomogeneity and mixture, as well as chemical reactions. Even though the
investigation of this paper is restricted to the cold flow of homogeneous gases, various time and
length scales are involved in this problem.Large time scales are prescribed by the speed of the
engine. The smallest can be expressed in terms of the speed of sound. In general, numerical
integration techniques cover this range of time scales, however, the problem becomes more
challenging in space dimensions. Large vortex structures are limited by the size of the cylinder, the
shape of the inlet or the valve and the piston. These structures are intermingled with turbulent
fluid motion especially near shear layers, for example the jet like flow into the cylinder, or close to
walls. Up to now it is not feasible to resolve the computational domain down to scales given by the
Kolmogoroff-length. Especially in three-dimensional flow problems direct modeling is hindered by
missing computer power. Instead turbulence modeling using the time averaged equations of motion
with additional closure assumptions of algebraic or differential type is widely employed. A survey of
such investigation is recently given by Heywood {1]. The applicability of such models is
questionable, since they are derived for stationary boundary layers or jets. Therefore the present
work intentionally focuses on the formation and development of large-scale vortices during the
inta" = and compression stroke. Hence friction can be neglected and a description of the flow should
be given by the Euler equations for time-dependent compressible flow.

GOVERNING EQUATIONS

The Euler equations are used to compute the time-dependent compressible flow in a piston engine.
The domain of integration is defined by the fixed cylinder walls and the moving piston of which the
crown may have special shapes. A suitable curvilinear time-dependent grid is described by the
coordinates
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x=x(En), y=yl&nl, z=2z(EnLT), t=x, (1)

where { maps the axial direction, § and n the cross-section of the cylinder onto the computational
domain. The conservative form of the Euler equations then reads

UreFyoGy+Hy=0. @
The vector _
U=Jlg,ou.ov. gw.e )’ 2.2)

is the vector of the conservative variables, J = 2 (X;y., - Xy.Yg) the Jacobian of the transfor-
mation, and F, G, H are the corresponding fluxes with the contravariant velacities @, ¥, &.

gl ov oW
_ | sut+yzp _ | suv -vazep _ guw + tyezy -YpZy) P
Fe|gvi-xzp|, G=| gv¥ +xzp| , H=| SVW - [xZq-%2¢)p
gwil oWV gWW_+ [Xpyq =XnYe ) P
(e+p)T (e+p)¥ (e+pIW+ (Xpyy =Xq¥x) ZcP
with _ (2.3)
U= (yu-xviz
V = (—Y§u * X§V ) Z;
W=

(Y2 2y~ YZelu = (X2, =X Zg IV + (2o o W) (XgYy = Xn Ye ) .
The system of equations is closed with the equation of state for ideal gas.
P =(K-1)(e-%g(uz+vzowz))_ 2.4

For plane flow the term ?g vanishes, whereas for axisymmetric flow § and n are chosen as the
circumferential and the radial direction respectively, so that Fg contributes together with some
separated parts of C,, to a source term Q containing the curvature terms (3]

0706“0§;=a

with 3)

_ T
a-= % (gv. gv?-gw?. 2¢vw. guv, (e+plv)

METHOD OF SOLUTION

For the discretization of the conservation equation a node-centred mesh is used with the variables
and the geometry defined in one node point. Central dilferencing is used for the spatial derivatives,
what is well suited for the considered low Mach number flow in piston engines. To avoid odd-even
decoupling, fourth order damping terms are added. Thus for one direction the flux-balance reads

e.g. - -
£ F'z~l - F!-\ D
;™ T e “@
. ] -
with O, = esmg‘;g-‘-(r'm , ()

applied to the physical variable J1 U. For the resolution in time two methods are used, originally an
implicit factorization method for the plane and axisymmetric (low and an explicit Runge-Kutta
time-stepping scheme for three-dimensional calculations.
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Implicit Factorization Method

The implicit factorization method used for the plane and axisymmetric calculations is based on the
work of Beam and Warming [2] and was extended to axisymmetric flow in [3] by intreducing source
terms. For such flows the basic system of equations is given by

n an - -
(I+8% %‘;l— + Dy, ) (148t 83- 4 ATC"+ Dy ) AU"=

o (6)
=-Ar(g%og§'-«a»"-ogn-ogl . AD=0™'-T".

with A, B, C the corresponding Jacobians of the fluxes G and H, as well as the source term Q which
is treated implicitly. Additional damping terms Di; and Din are included at the left hand side to
compensate the stability restriction arising from the explicit damping terms. The tridiagonal
structure of the scheme is retained by choosing the implicit damping as e.g.

0, = _leAn2—a%f(J"G) , @

Stability is ensured, if

2

€ S 11—6(1+el), @8)

Commonly e = 2cg was chosen with eg = 0(At). A decoupling of that 5x5 block-tridiagonal system
into 5 scalar equation is achieved by diagonalization of the matrices A and B using a similarity
transformation [4],

ReTyheTy' + BeAT ®

where A, and Ay are diagonal matrices containing the eigenvalues of the Jacobian A and B.
Assuming the matrices T, and T¢ as locally constant the decoupled scheme reads

To(1+aT %(A,{') + 0, ) (T T;)"(um%m;) + DX;)(T;")"AU" =

(10)
G o - -1
- -Ar(-a%4—g-t£—+0)n-ArH“

Now the source term is included only in the explicit part of the equation, because its eigenvalues
differ from those of the Jacobian B 3], so that an implicit treatment will hinder the decoupling of
the system. The accuracy of first order in time is not affected as a comparison with the scheme (4.1)
has shown.

Runge-Kutta Time-Stepping Scheme

In order to compute more realistic configurations of piston engines three-dimensional flows have to
be considered. An extension of the proceeding factorization method, successfully used for the stiff
axisymmetric equations, leads to stability restrictions in three dimensions due to the factorization
error. Hence an explicit time-stepping scheme was chosen for three-dimensional computations.
Since the restricted time steps of this method are of the same order as those required for the
temporal accuracy of the computations, the efficiency is not impaired by using explicit instead of
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implicit schemes.Furthermore the simplicity and the suitability with regard to the architecture of
vector computers gave preference Lo explicit methods.

Recently Runge-Kutta time-stepping schemes are brought up [5]. The method used in this paper
belongs to a class of Runge-Kutta like schemes given by the following sequential algorithm.

G(Ol _n"
O™ = G o, ¢ (FIT" ) + 5T, + AT, + DT™)) aLy
g™ g™ W =min(vM) .M <5 .

In contrast to the classical four step Runge-Kutta Scheme this sequence requires less computer
storage, but on the other hand the time accuracy for non-linear fluxes F, G and H is limited to the
second order. In this case the coefficients ay and an.y are prescribed as

ay=1  Kyy= 17 . (11.2)

A stepping sequence with N = 5 has three free parameters ag, az, a; left which serve to improve the
stability properties of the scheme. Vichnevetsky [6] has shown that the maximum CFL-number for
a stable algorithm of a scalar test problem is given by CFL = N - 1, if a3, agz and aj are suitably
chosen.

%y = 3/8 xy = 1/5 x,=1/, (11.3)

The stability property of a five step scheme are reflected by a von Neumann stability analysis for
the scalar test equation

A—ctAx‘um= 0 . a=const . (12)

U; + au, +
Fig. 1 shows the amount of the amplification factor G as a function of the wave angle 8 = kAx in the

case of vanishing damping term ¢ = 0 for several CFL-numbers. Thereafter stability is gained up to
CFL = 4.

The behaviour of the amplification factor with additional damping is plotted in Fig. 2 and Fig. 3.If
the damping terms are evaluated at each step of sequence (11), g = v - 1, Fig. 2 reveals that
complete damping of the highest frequences is not available. The function G(8) however is smoothed
and even reaches zero for the highest frequency, Fig. 3 , if

p =min(v,1), (13)

By freezing the damping term a considerable amount of computing time is saved, too.

BOUNDARY CONDITIONS

The boundary conditions are formulated explicitly. At rigid walls §, n or { = const vanishing
normal velocities, G, v or W Eq. (2.3.) respectively are required, whereas tangential velocities are
linearly extrapolated. Likewise density and pressure are found by linear extrapolation except at
moving walls where the value of the pressure is gained by evaluatling the momentum equation in
normal direction with respect to the wall.

The boundary conditions at open borders are put in order with the one-dimensional theory of
characteristics. For incoming flow during the intake stroke density and velocity are prescribed,
whereas the pressure is extrapolated from the inner region. The velocity normal to the cylinder
head is chosen in a manner, so that the global density does not change during the intake stroke, the
24
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direction of the velocity is given by the angle of the valve seat. During the exhaust stroke only the
mass flux is prescribed, all other flow quantities are extrapolated from the inner region.

RESULTS

Plane and Axisymmetric Flow

These preliminary investigations are used to study the influence of the piston shape and the effects
arising from the inclination of the incoming jet and of the compression ratio on the onset and
development of the vortical flow in the cylinder [3], [7]. The plane flow was computed to compare
with the optical experiments done by Mach-Zehnder interferometry. The numerical simulation of
the plane flow revealed that vortex patterns generated during the intake stroke are conserved until
the end of the compression stroke, whereas in axisymmetric flows the flow patterns change during
the compression stroke basicly due to vortex merging. Representative for the preceding
investigations two examples for numerical and experimental results are discussed in the following
section. The experimental set-up consists of a cylinder and a piston with rectangular cross-section
for the plane flow simulation.

In the first case, the flow field in a cylinder with a step piston is investigated. The valve in the shape
of a slit is located near the lower piston wall and aligned parallel to the axis of the piston which
moves sinusoidally with an engine speed of 510 rpm. The stroke and the height of the piston is
chosen to be equal, the compression ratio is e =4.3. The sequence of photographs in Fig.6 compares
measured and computed flow flields during the intake stroke. In each case lines of constant density
are presented. The experimental investigation shows that the incoming jet forms a fungoid
structure at an early stage of the intake stroke (26° crank angle). Then the jet is deflected at the
piston crown and rolls up to a counter-clockwise rotating vortex in the lower part of he flow field. At
the same time a secondary vortex is generated at the corner of the piston step due to its accelerated
movement. This secondary vortex is fed by the jet-like flow which is directed from the convex corner
of the piston to the cylinder head. Finally the coarse structure of the flow field consists of two
vortices with opposite rotation.The numerical prediction of the flow is in qualitative agreement
with the experiments, although the numerical boundary conditions only roughly agree with the
experimental conditions, as can be seen from the underestimation of the strength of the incoming
jet. At the end of the intake stroke the lower vortex settles underneath the step of the piston with its
strength increasing during the compression stroke. Several disiurbing influences may have
prevented to observe this vortex in the experiments up to now.

In the second example, Fig. 7, the investigation dealt with a flat piston in connection with an
incoming jet inclined at 45°. The compression ratio now is ¢ = 3.7, the engine speed is 526 rpm. A
large vortex is generated during the intake stroke which survives and even enlarges during the
compression stroke. The numerical calculation predicts this vortex and its enlargement in close
agreement with the experiment.

In the preceding computations a mesh with 83x53 grid points similar to those in Fig. 4 was used. To
solve the Euler equations the diagonalized version of the factorized method Eq. (10) was employed.
Its time accuracy was confirmed by comparison with the results obtained from the second order
accurate Runge-Kutta scheme.

Three-dimensional Flow

Up to now several configurations have been investigated, ¢. g. Nlat and shaped pistons, and centred
and off-centred valves. But the work is at an early stage, and the investigations have to be
intensified in future. In all cases considered, symmetry about a plane containing the axis of the
cylinder and the valve was assumed for saving computer time and storage. As indicated by Eq. (1)
the computational grid is divided into a stationary part discretizing the cross-section of the cylinder
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and a time-dependent part mapping the axial direction onto the computational domain. The
discretization of the cross-section is based on conformal mapping as given in [8) wilh additional
smoothing and orthogonalization, Fig. 5. In axial direction the meshes are similar to those used for
the two-dimensional flow, Fig.4. The number of points are 56x23x53.

The presented results concern with the onset of circumferential or swir) flow due to the off-centred
intake valve. The case of a disc piston on the one side and a shaped piston on the other side shall be
discussed. During the intake stroke (72° crank angle) the incoming flow forms an asymmetric
primary toroidal vortex, Fig. 8 and 12, and a smaller secondary vortex in the corners at the cylinder
head. The excentric location of the valve generates a significant swirl flow as can be seen in Fig. 9
and 10 in the case of a disc piston. This swirl flow strongly distorts the toroidal vortices which
finally at a crank angle of 180° does not dominate the flow field any longer. The swirl flow is fully
established during the compression stroke, Fig. 11.At the beginning the flow field with the shaped
piston is similar to the one described above, Fig.12.The swirling flow, however, is now
nonuniformly distributed over the cross-section of the clyinder and different at various axial
locations, Iig. 13. Instead of a unique swirl flow which is formed during the intake stroke in the
case of the disc piston, a complex system of vortices with their axis in circumferential direction
occurs, Fig. 14. During the compression this system of toroidal vortices govern the flow, Fig. 15.

CONCLUSION

The time-dependent compressible inviscid flow in a cylinder of a piston engine is computed by finite
difference schemes of the Euler equation. For plane flow the computed structure of large-scale
vortices is compared with experimental results. The comparison confirms that some essential
aspects of the flow can be described by the inviscid flow. First computations of three-dimensional
flows representing more realistic configuration show the influence of off-centred valves and of the
shape of the piston crown on the flow. Further questions related to stretching and tilting of vortex
structures have not been answered yel. The symmetry condition assumed for the considered
configurations have to be called in question. Calculations with a centred intake valve showed that
the initial axisymmetric flow could not be maintained during the compression stroke. A possible
influence on the solution may arise from the computational grid and has to be examined. Although
special questions of practical interest can be answered through this investigation, efforts have to be
initiated to include friction and turbulence in future investigations.
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CONVEXITY IN HYPERBOLIC PROBLEMS. APPLICATION TO A DISCONTINUOUS
GALERKIN METHOD FOR THE RESOLUTION OF THE POLYDIMENSIONAL
EULER EQUATIONS

F. BOURDEL*, PH. OELORME™®, p.A. MAZET®
* ONERA-CERT, 8P 4025, 31055 TOULOUSE CEDEX (FRANCE)
** ONERA, Division de 1'Energétique, BP 72, 92322 CHATILLON CEDEX (FRANCE)

SUMMARY

For the physical hyperbolic problems one can exhibit a fundamental
function of the entropic variables and of a space-time vector. In the
case of Euler equations, this function can be expressed in a simple form
and splitted into a convex function and a concave one, and it is possible
to find a polydimensional scheme which generalizes the Courant scheme.
Then we present some mono and bidimensional numerical results.

INTRODUCTION

When a hyperbolic system has a supplementary conservation law (on
entropy) it is possible to define a function [ of a space-time vector
and the entropic variables. This function sounds having a very important
place in those systems. Many of thgir properties can be interpreted by
means of the convexity domain of I {(as : Cauchy Kowalevska's characteris-
tics, Rankine Hugoniot relations, inequation on the boundary, arrows of
time, phenomenological relations, Courant scheme). We began the study of
this function with a variational formulation where the convexity is
essential (see Mazet [2]). We shall explain its properties in the first
part. For the Euler equations, [ can be written by using some ideas of
the statistical mechanics (second Part). So it was possible to define a
Galerkin discontinuous scheme, which is consistent with the weak
equations and the entropy inequation, and to exhibit a global
overegstimation (Part 1II1). This scheme 1looks 1like a polydimensional
splitting method, but it is possible to imagine a space-time mesh
refinement. In part IV numerical results will be presented.

I : DEFINITION AND PROPERTIES OF THE FUNDAMENTAL FUNCTION [*

Notations : we shall use two manifolds :

- the space-time indexed with a latin index iz0,n - 0 means time
(dimension net)

- the state-space indexed with a greek index az1,N (dimension N).

It is the space of the thermodynamical quantities which play a role
in the considered physical problem {as : mass, momentum, energy in fluid
mechanics). The system of partial differential equations (SPDE) obtained
is written :

3, £%w = g%w) in D' ()
i=z0,n azl, N

(1) is a system of balance equations, the left-hand side is a space-time
divergence.
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We call phenomenological closure the relations
fi‘“ = fi'q(w) or something equivalent.
In general we have 2 %wr = W
the SPDE is called hyperbolic if V n, space vector (V(n;)i=1,3) the
eigenvalues of ————:iuare real.

3 w*

* Entropy. entropic variables. new phenomenological closure :

{see Harten [8]) for the physical system the SPDE has a supplementary
balance law :

i i i,a
H . = . f
3 Q«(w). S(w) 61 ST (w) L 01
i=0,n az=t,N , S° convex in w 3 si
If such a law exists, the phenomenological closure verifies : —is° 0a,
0 ¢’

¢, are called entropic variables.

]

*
If we use the polar transform of S (w) , S () = Sup {weo - s%(wi}

a_ 35" 1e)

So(w) is convex in w so it is possible to define wi(g) by w = 3 e

- . .
and the functions st (o) = ' %w o m)wn - stwo 9.
So the phenomenological closure can be defined with only n+t1 functions

ix % . a Slt
st (o) , s%" convex in 9, PALL 3 .
%

Let I'(o.n) be : ['(o,n) = ng si'(o)

All the SPDE defined by c* are hyperbolic because the eigenvalues of
a ¢t:f
iy o
2 ['
are the same as those of the matrix 5;——5;— (¢, w) , where n=(|,ni), which
a
are real because this matrix is symmetric.

x
* Properties of the fundamental function L (¢,n)

The arrows of time : if one studies the variance of the balance
equations, i.e. how they change in another space-time frame, one finds
another system of balance equations (cf. Delorme [4)), s0 : is the time
only a geometric index ? In fact, not, because we have S°'lo) = ['lo.n),
where S°° is the polar of the entropy in the new frame, and n the new
time direction expressed in the old frame. So we can define a convex cone
of the admissible "times” :
Cle) = (n,t*(w,n) convex in g} ;
the boundary of this cone is given by :

2 %
1 4
det [a .t (.'"'] = 0, because if I is convex in ¢ the eigenvalues
a P

of the Messian of [' are positive.

n is the normal vector to a characteristic surface in the sense of Cauchy
- Kowalevska (see [3))

Cle) is the polar cone of the "future characteristic cone”.
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* Bankine-Hyaonjot relations :

If g(x‘) =0 i=0,n is the egquation of a discontinuity surface the
R. & H. relations can be written. The gradient with respect to ¢ of
t'(w.%ig) is constant through the jump (the gradient of g is a normal
vector to the space-time discontinuity)

*
ar'  as? i a
—_— 8.9 = §' 0.9
' 3 i i
a (]
* u

In order to describe the very difficult problem of the boundary
conditions of the hyperbolic SPOE, AUOOUNET & MAZET and 0UBOIS & LE FLOCH
introduce the following boundary inequation :
If n is the outwards unit normal to a domain, 9in the inside value, Pout
the outside one, we must have {cf. [1) & [1))

i i out ia i,a
ni [sout - sin T Va (fout h fin <o (2)

This inequation can be written

L 1

* * 9L a a

Lin ™ Tout - dp, in (o5, "9 1 €0 (3)
{3} is the dual form of (2).
If the R. & H, relations are true : "i ¢ (out) = " Tl lin} , the
boundary inequation gives the entropy inequation :

i i

"y sout i sin <0

For the linear SPOE it is very easy to see that the “good” boundary
<2 . N N x
conditions are given by a convex-concave splitting of I  (see below).

II : STUDY OF THE FUNDAMENTAL FUNCTION t* FOR THE EULER SPDE
x
* the I function :

For the Euler equations in the ) dimensional case we have n=3 and N=5.
The w* are massig), momentum (q') and energyle).

) q,
1f vl is the velocity ;ﬁ of the gas, the fluxes are :

o vt
£t =<o vivl, pa") i,9=1,3

viiE . P
v2

p is the pressure ; for polytropic gases, p = (y-1) (e-¢ —35 1.

e e e

(¥ is a constant which depends only from the gas).
The additional conservation law is given by : |

st vt 6P/ Y)  i=0.3, ve =g,
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S convex in w implies some conditions on the function 6 (see Harten {8]).
If we introduce the entropic variables :

oo. 01. ¥, we find the relations : q1 ®, * 0 p‘ =0 (s)

+ v, le - V—zl-s°
900 %, -0 3 | ge e = .
The general form of S is equivalent to :

)
s solution of the SPDE (5) (¢ = 25~ 1 and s° convex in W.
ow
*
In order to find the most general expression for [ , we should calculate
the entropic variables and eliminate w.

as®*
*
But it 1is easier to interpret (5) as a SPDE on s° (wu = — }, so
. aw
o¥ «

S is a solution of (5) and is convex in @.

By integrating (5) we find the general form of

1 2
% (o) = ———— x Hlp - [ —i )
TREAR e 20,

with some conditions on H, which are necessary for the convexity of
or

S
I (p,n) is given by : .
i 1 A
* ix v i i
L (p,n) =n, S = - X Hlp - L )
i 0e (_1_) [+ 321 2 ¢e
° 09 Y¥-1
and ¢ = -9, (i=20,3).
The phenomenological closure is :
. . ' . 2
ox i H i i v 1 H
ds =W doi- m [dwo - v, de  + 3 dwe] T ( ) dve
9, Y1
' H
so Qg = %,E--‘-pvz=--11—1 —— (internal energy)
( )
. 9. "] -1
and V1 = 2 °
%
PR ST AR I G 1 & de )
o, W T T M5t 7 W T L, e
. % v
H i !1
- d - d
( : [de o, L ]
¢, ¥
. H 1 2 4
so we find = = ~-1) -—-9V . 5
P ( ') (y [E 2 @ ] :
Oe Y %
* Statistical representation : +§&
For the Euler equations, mass, momentum and energy can be defined through ks
a statistical interpretation. Let wus define the velocity distribution A
4 .
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function :
o (x*, . n1. i3=0.3
xi : space time coordinates
of uj : velocity of the particles (w® = 1

n : vibration (or rotation) velocity

as the density of number of particles whose velocities are u and n

sow =f au [ an k%tu.,m @
R" R

where K% is : (collision vector]),

n +
We call H = R X R

The statistical definition of the entropy :
Let us consider the variational problem

sup Inf [ L(®) - ¢ K%(u.,n18 + o W = s%W)
a a
1] -} H
where
if L is a convex function, this problem is well-posed ;
9 and 9 are given by the stationarity equations :
L' () - o k" = 0 (6)

w7 k* e
H

0 (1)

PN
L is convex so {(6) gives © = L (wn k%)

x*
(L is the polar